
Servlets & JSP

Dr K Chaitanya

Assistant Professor

Department of CSE

ANU College of Engineering &Technology

Acharya Nagarjuna University

Core Java: J2SE

Advanced Java:J2EE,J2ME

J2EE: For Developing web based applications

J2ME: For Developing mobile applications

Software's needed

• JDK ---- servlets in java

• Eclipse --- editor

• Apache tomcat -- server

• Oracle s/w -- database

Servlet
• Servlet technology is used to create a web application (resides at server side and

generates a dynamic web page).

• Before Servlet, CGI (Common Gateway Interface) scripting language was common
as a server-side programming language.

• Disadvantages of CGI

 There are many problems in CGI technology:
1.If the number of clients increases, it takes more time for sending the response.
2.For each request, it starts a process, and the web server is limited to start processes.
3.It uses platform dependent language e.g. C, C++, perl.

• Advantages of Servlet
Threads have many benefits over the Processes such as they share a common memory area,
lightweight, cost of communication between the threads are low. The advantages of Servlet are as
follows:
1.Better performance: because it creates a thread for each request, not process.
2.Portability: because it uses Java language.
3.Robust: JVM manages Servlets, so we don't need to worry about the memory leak, garbage

collection, etc.
4.Secure: because it uses java language.

• A web application is an application accessible from the web. A web application is
composed of web components like Servlet, JSP, Filter, etc. and other elements such
as HTML, CSS, and JavaScript. The web components typically execute in Web
Server and respond to the HTTP request.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/perl-tutorial
https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection
https://www.javatpoint.com/Garbage-Collection

Life cycle of a servlet
The servlet is in new state if servlet instance is created. After invoking the init() method, Servlet comes in the ready

state. In the ready state, servlet performs all the tasks. When the web container invokes the destroy() method, it

shifts to the end state.

1) Servlet class is loaded

The classloader is responsible to load the servlet class. The servlet class is loaded when the first request for the

servlet is received by the web container.

2) Servlet instance is created

The web container creates the instance of a servlet after loading the servlet class. The servlet instance is created

only once in the servlet life cycle.

3) init method is invoked

The web container calls the init method only once after creating the servlet instance. The init method is used to

initialize the servlet. It is the life cycle method of the javax.servlet.Servlet interface.

Syntax of the init method: public void init(ServletConfig config) throws ServletException

4) service method is invoked

The web container calls the service method each time when request for the servlet is received. If servlet is not

initialized, it follows the first three steps as described above then calls the service method. If servlet is initialized, it

calls the service method. Notice that servlet is initialized only once.

The syntax of the service method: public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException

5) destroy method is invoked

The web container calls the destroy method before removing the servlet instance from the service. It gives the

servlet an opportunity to clean up any resource for example memory, thread etc.

The syntax of the destroy method of the Servlet interface: public void destroy()

If we implement Servlet Interface we need to implement all the 5 methods.

If we extends GenericServlet class we need to implement 1 method.

Generally for developing web based applications we extends HttpServlet class.

GenericServlet

When we use get and post methods

In generic servlet the values fnum=90, snum=70 are passed to the servlet through URL. If we want to read data from server to

browser we use get method. If we want to read data from browser to server we use post method. If we use get method we can

pass limited data. If we use post method we can pass unlimited data. If we use post method the data is passes through body so

then can transmit unlimited data.

By default

method=“get”

Http Servlet

Eventhough we use post in .html file, if we change the method=get (while running right click->inspect->change

method=get) once again we get values in the URL. To avoid this problem, instead of using service() method we use

doPost() method.

In index.html we create a form. Using servlets we access the data from the html file. By using JDBC we store the accessed

data into the database. Through sql commands we can insert data otherwise we can also insert data through forms and

servlets.

Index.html

//loading driver establish connection //creating object for statement

View Servlet :

 import java.io.IOException;

import java.io.PrintWriter;

 import java.sql.Connection;

 import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.Statement;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

 import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

 import javax.servlet.http.HttpServletResponse;

 @WebServlet("/ViewServlet")

public class ViewServlet extends HttpServlet

{

 private static final long serialVersionUID = 1L;

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException

{

 int rollno = Integer.parseInt(request.getParameter("rollno2"));

PrintWriter out = response.getWriter();

out.println(" Student Rollno : "+rs.getString(1)+"
");

out.println("Student Name : "+rs.getString(2)+"
");

out.println("Telugu : "+rs.getInt(3)+"
");

out.println("Hindi : "+rs.getInt(4)+"
");

out.println("English : "+rs.getInt(5)+"
");

out.println("Maths : "+rs.getInt(6)+"
");

out.println("Science : "+rs.getInt(7)+"
");

out.println("Social : "+rs.getInt(8)+"
");

int total = rs.getInt(3)+rs.getInt(4)+rs.getInt(5)+rs.getInt(6)+rs.getInt(7)+rs.getInt(8);

out.println("Total : "+total);

}

catch (Exception e)

 { e.printStackTrace(); }

 } }

try {

 Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con = DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:orcl","system","k1");

Statement st = con.createStatement();

String query = "select * from sscmarks where rollno="+rollno;

ResultSet rs = st.executeQuery(query); rs.next();

response.setContentType("text/html");

getParameterNames() method
• With getParameter() we are able to find parameter values by
passing parameter name.

• Parametername–n1
Parameter value – val

• If a client send the data to the servlet, that data will be
available in the object of HttpServletRequest interface.

• In case of getParameter() method we have to pass input
parameter name and it will give the value.

• If you are not aware of input parameter name ? or if you
have 50+ input values its really tedious to use getParameter()
method.

getParameterValues() method
• The method getParameterValues() will generally came into
picture if there is a chance of getting multiple values for any
input parameter, this method will retrieve all of it values and
store as string array.

• String[] values = getParameterValues(“Input Parameter”);

File: LoginServlet.java

1.import java.io.IOException;

2.import java.io.PrintWriter;

3.import javax.servlet.ServletException;

4.import javax.servlet.http.HttpServlet;

5.import javax.servlet.http.HttpServletRequest;

6.import javax.servlet.http.HttpServletResponse;

7.import javax.servlet.http.HttpSession;

8.public class LoginServlet extends HttpServlet {

9. protected void doPost(HttpServletRequest request, HttpServletResponse response)

10. throws ServletException, IOException {

11. response.setContentType("text/html");

12. PrintWriter out=response.getWriter();

13. request.getRequestDispatcher("link.html").include(request, response);

14. String name=request.getParameter("name");

15. String password=request.getParameter("password");

16. if(password.equals("admin123")){

17. out.print("Welcome, "+name);

18. HttpSession session=request.getSession();

19. session.setAttribute("name",name);

20. }

21. else{

22. out.print("Sorry, username or password error!");

23. request.getRequestDispatcher("login.html").include(request, response);

24. }

25. out.close();

26. }

27.}

File: LogoutServlet.java

1.import java.io.IOException;

2.import java.io.PrintWriter;

3.

4.import javax.servlet.ServletException;

5.import javax.servlet.http.HttpServlet;

6.import javax.servlet.http.HttpServletRequest;

7.import javax.servlet.http.HttpServletResponse;

8.import javax.servlet.http.HttpSession;

9.public class LogoutServlet extends HttpServlet {

10. protected void doGet(HttpServletRequest request, HttpServletResponse re

sponse)

11. throws ServletException, IOException {

12. response.setContentType("text/html");

13. PrintWriter out=response.getWriter();

14.

15. request.getRequestDispatcher("link.html").include(request, response);

16.

17. HttpSession session=request.getSession();

18. session.invalidate();

19.

20. out.print("You are successfully logged out!");

21.

22. out.close();

23. }

File: ProfileServlet.java

1.import java.io.IOException;

2.import java.io.PrintWriter;

3.import javax.servlet.ServletException;

4.import javax.servlet.http.HttpServlet;

5.import javax.servlet.http.HttpServletRequest;

6.import javax.servlet.http.HttpServletResponse;

7.import javax.servlet.http.HttpSession;

8.public class ProfileServlet extends HttpServlet {

9. protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, I

OException { response.setContentType("text/html");

10. PrintWriter out=response.getWriter();

11. request.getRequestDispatcher("link.html").include(request, response);

12. HttpSession session=request.getSession(false);

13. if(session!=null){

14. String name=(String)session.getAttribute("name");

15. out.print("Hello, "+name+" Welcome to Profile");

16. }

17. else{

18. out.print("Please login first");

19. request.getRequestDispatcher("login.html").include(request, response);

20. }

21. out.close();

22. }

23.}

Directives
• Directives supply directions and messages to a JSP container.

• The directives provide global information about the entire page of JSP.
Hence, they are an essential part of the JSP code.

• The jsp directives are messages that tells the web container how to
translate a JSP page into the corresponding servlet.

• Directives can contain several attributes that are separated by a comma
and act as key-value pairs.

• In JSP, directives are described with a pair of <%@ %> tags.

• Syntax: <%@ directive attribute="value" %>

• There are three types of directives:
• page directive

• include directive

• taglib directive

Implicit objects

JSP Form Processing using Get and Post Methods

There are two commonly used methods to send and receive back information to the webserver.

The browser uses two methods to pass this information to the web server. These methods are the GET Method and
the POST Method.

1.GET Method:

•This is the default method to pass information from browser to web server.

•It sends the encoded information separated by ?character appended to URL page.

•It also has a size limitation, and we can only send 1024 characters in the request.

•We should avoid sending password and sensitive information through GET method.

2.POST Method:

•Post method is a most reliable method of sending information to the server.

•It sends information as separate message.

•It is commonly used to send information which are sensitive.

JSP handles form data processing by using following methods:

1.getParameter():It is used to get the value of the form parameter.

2.getParameterValues():It is used to return the multiple values of the parameters.

3.getParameterNames()It is used to get the names of parameters.

4.getInputStream()It is used to read the binary data sent by the client.

No change in main.jsp file

Connecting to database in JSP

Java Beans
• JavaBeans components are Java classes that can be easily reused and composed together into

applications.

• A JavaBean can be defined as a reusable software component.

• We can write a JavaBean that can then be used in a variety of other Java based softwares such
as applications, Servlets or JSP pages.

• In this way we can define our business logic within a JavaBean and then consistently use that
logic in separate applications.

• Benefits of JavaBeans

• By using JavaBeans we can fully separate the business logic from the generation of the
display.

• The other advantage of using JavaBeans is that the business logic can be used by more than
one application.

• example, both a client based Java application and a JSP page can access the same JavaBean
thus guaranteeing the same functionality.

More specifically a JavaBean is just a Java class with the following rules,

•It is a public class.

•It has a public constructor with no arguments.

•It has public getter and setter methods to read and write to properties.

•Properties are always accessed using a common naming convention. For each property two

methods must exist: a getXxx() and a setXxx() method where xxx is the name of the property

and of a private instance variable. They are called getter and setter methods respectively.

•For example, if we want a property called fileName then we would need to define an instance

variable called fileName and two methods: getFileName() and setFileName().

Example 1

JavaBeans and JSP:

Java Server Pages technology directly supports using JavaBeans components with JSP language

elements. We can easily create and initialize beans and get and set the values of their properties.

JSP Actions for JavaBeans:

To use a JavaBean in our JSP page we make use of three JSP actions that we saw earlier. They

are,

•<jsp: useBean/> – find or instantiate a JavaBean

•<jsp: setProperty/> – sets the property of a JavaBean

•<jsp: getProperty/> – gets the value of a JavaBean property

The first of these is used to specify which JavaBean we want to use in our page. The next two

actions, as their names suggest, are used to set and get values of properties of the JavaBean.

Syntax:

<jsp:useBean id="beanID" scope="beanScope" class="package.beanName" />

<jsp:useBean id="EmployeeBean" scope="page" class="com.example.EmployeeBean" />

The setProperty and getProperty Actions

These are used to set and read property values.

Syntax

<jsp:setProperty name="bean" property="propertyName" value="val" />

<jsp:getProperty name="bean" property="propertyName" />

where beanID is the variable name used in the <jsp:useBean/> tag and propertyName is the name

 of the property we are setting or getting.

To use a variable as either a property or a more often as a value then, between the quotes,

enter a JSP expression that returns the value of the variable.

For example,

<jsp:setProperty name="empBean" property="firstName" value="<%= strFirst %>" />

where strFirst is a variable used in the page.

Example of jsp:setProperty action tag if you have to set all the values of incoming

request in the bean: <jsp:setProperty name="bean" property="*" />

Example 2:

Example 3

1. bean.java

package myexample;

import java.io.*;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.ResultSet;

public class bean

{

 private int msgid;

 private String message;

 private Connection connection=null;

 private ResultSet rs = null;

 private Statement st = null;

 String connectionURL = "jdbc:mysql://192.168.10.59/messagepaging";

 public bean()

 {

 try {

 Class.forName("com.mysql.jdbc.Driver"); // Load the database driver

 connection = DriverManager.getConnection(connectionURL, "root", "root"); // Connection to the db

 }catch(Exception e){

 System.out.println("Exception is ;"+e);

 }

 }

Example 4

public void setmsgid(int msgid)

 {

 this.msgid = msgid;

 }

 public int getmsgid()

 {

 return (this.msgid);

 }

 public void setmessage(String message)

 {

 this.message = message;

 }

 public String getmessage() { return (this.message); }

 public void insert()

 {

 try

 {

 String sql = "insert into message(id,message) values('"+msgid+"','"+message+"')";

 Statement s = connection.createStatement();

 s.executeUpdate (sql);

 s.close ();

 }catch(Exception e){

 System.out.println("Exception is ;"+e);

 } } }

